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The two- and three-dimensional contact replication processessCRPd for monoclonal reproduction were
analyzed through intensive Monte Carlo simulations. In these models, the occupation rates are equally divided
among the empty nearest neighbor sites of an occupied site. As the one-dimensional case, the two-dimensional
version of the model belongs to the directed percolation universality class and the critical rate defining the
absorbing state transition islc=1.083 20s7d. However, the critical exponents of the three-dimensional CRP are
those of the four-dimensional original contact process and, consequently, the data suggest that the CRP model
has a distinct upper critical dimensiondc=3.
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The counterpart of the Ising model for the nonequilibrium
statistical mechanics is the contact processsCPd proposed by
Harris f1g as a model of epidemics. In the CP model, par-
ticles represented by occupied sites of a regular lattice die at
a rate 1 whereas empty sites are occupied at a ratekl /q.
Here, k is the number of occupied nearest-neighborsNNd
sites of an empty site andq is the coordination number of the
lattice. As the ratio of infection and death increases, the sys-
tem exhibits a critical phase transition from the vacuum to an
active state characterized by the directed percolationsDPd
universality classf2,3g. The CP critical exponents and rates
were precisely determined through series expansions and
Monte Carlo simulations ind=1, 2, and 3 dimensionsf4–9g.
Also, the upper critical dimension, in which the critical ex-
ponents assume the mean field values, isdc=4. For a review
about contact processes and the DP universality class, see
Refs.f10–12g.

Due to its importance as a fundamental model, several CP
generalizations were proposedf13–20g. All these models
preserve the DP universality class. A common feature for all
mentioned models is that the flow of the infection is equally
divided among all the neighbors of the contaminated indi-
viduals. This is a reasonable hypothesis for a model of epi-
demics, but not adequate for a model of monoclonal replica-
tion processes such as those occurring in tumor or bacterial
growth f21g. Actually, in these cases it is more realistic to
suppose the flow of new cells divided just among the empty
neighbors because the new cells should occupy empty sites
or sites occupied by normal cells in the case of the tumor
growth. Several stochastic models have been proposed to
simulate monoclonal cell reproductionf22–26g. The simplest
one is the Williams and BjerknessWBd modelf23g, in which
death and reproduction are considered only for cells with at
least one empty NN site. The WB model does not belong to
the DP universality class. Recently, we studied a modified
one-dimensional version of the CP, in which cells with at
least one empty neighbor site replicate at ratel but any cell
dies at rate 1f27g. The new cells generated from the division
occupy one of their empty NN sites chosen at random. Since

only cells in “contact” with empty sites can replicate, we
refer to this model as acontact replication processsCRPd.
This model is a hybrid of the CP and the WB models. It was
shown through Monte Carlo simulations ind=1 that the
CRP model belongs to the DP universality classf27g.

In the present work, we analyze the contact replication
processessCRPd in two and three dimensions. The central
concern of this work is about the maintenancesor notd of the
DP universality class in higher dimensions. As we shall dem-
onstrate, ind=2 the model belongs to DP class, but ind=3 it
is not the case. Indeed, the present numerical results suggest
that dc=3 is the upper critical dimension of the model, in
which the mean field critical exponents are obtained.

As in the original CP, the cells lie on a regular lattice with
periodic boundaries, in whichsi =1 represents an occupied
andsi =0 an empty site. The dynamics of the CRP includes
two processes, namely, cell death and reproduction. A cell
dies at constant rate 1. In turn, if a cell has at least one empty
NN site, it replicates at ratel and its daughter cell occupies
one of its empty NN sites chosen with equal probabilities.
Notice the subtle but essential difference between CRP and
CP. In CP, an occupied site infects each one of its empty NN
sites at ratel /q independently of their number. In contrast,
in the CRP the occupation rates depend on the number of
empty NN sites, i.e., an occupied site infects each one of its
empty NN sites at ratel /n* , wheren* is its number of empty
NN sites. If the reproduction rate is not sufficiently large, the
vacuum always is reached. The discrete-time formulation of
the CRP used in the simulations is the following. At each
time step, one occupied sitesa celld is chosen at random. The
chosen cell dies with probabilityp=1/s1+ld. In turn, the
cell replicates with probability 1−p if at least one of their
NN sites is empty. If all the NN sites are occupied, the cell
does not replicate. But, if the replication occurs, one of their
empty NN sites is occupied with equal probabilities. After
each step, the time is incremented byDt=1/n, wheren is the
number of cells just prior the event.

To determine the CRP critical rate ind=2 and 3 dimen-
sions, we considered the CRP starting with a single particle
at the originf10,11g. The behaviors of some time-dependent
quantities, namely, the survival probabilityPstd, the mean
number of occupied sites*Electronic address: silviojr@ufv.br
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r
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and the spreading

R2std =
1

nstdKo
r

r2srstdL s2d

were analyzed. Herek¯l represents the average over all tri-
als, including those reaching the absorbing configuration be-
fore time t, andr the position of the site measured from the
initial seed. In the subcritical regimesl,lcd both Pstd and
nstd decay exponentially, whereas the spreading is diffusive
with R2std, t if the CRP obeys the usual scaling theory for
absorbing phase transitions. In the supercritical regimesl
.lcd, Pstd reaches a constant and finite value,nstd, td, and
R2std, t2, when t→` f11g. Exactly at the critical pointsl
=lcd, these quantities asymptotically follow power laws
Pstd, t−d, nstd, th, andR2std, tz. Notice thatz is frequently
used in the literature to represent the dynamic exponent, but
herez refers to the spreading exponent. For the DP univer-
sality class, these exponents obey the hyperscaling relation
4d+2h=zd for dø4 f2g. Thus, the double-logarithm plots of
these quantities near the critical point exhibit an upward
sdownwardd curvature forl.lc sl,lcd.

In Fig. 1sad, double-logarithm plots ofPstd andnstd ver-
sus time for the two-dimensional CRP and distinctl values
around the critical point are shown. To determine the point of
null curvature, the double-logarithm data are fitted by cubic
polynomialsP3std and the mean curvature is defined as

kkl =
1

log10 tf − log10 ti
E

log10 ti

log10 tf

kstd, s3d

whereti stfd is the initial sfinald time used for the fittings and
kstd is the local curvature defined by the usual formula

k =
P39

f1 + sP38d
2g3/2. s4d

We usedti =102 andtf =105 for all l values. The critical point
is determined by extrapolating the data using a quadratic
fitting fFig. 1sbdg. The critical rate obtained consideringPstd
was lc=1.083 20 33 and the value obtained usingnstd was
lc=1.083 211 3. Thus,lc=1.083 20s7d was adopted, where
the number in parentheses reflects the uncertainty. Notice
that the CRP critical rate ind=2 is smaller than the corre-
spondent rate of CPlc

CP=1.6488s1d f10g. Indeed, this is ex-
pected since transitions evolving the birth of a new particle
occur at ratel /q in CP and at ratel /n* in CRP, wheren*

øq. In Fig. 2, the ratios between time-dependent quantities
and power laws with the critical exponents of the DP class
fd=0.4505s10d, h=0.2295s10d, andz=1.1325s10d f5,6gg are
shown. All the curves asymptotically reach a constant value
demonstrating that the two-dimensional CRP belongs to the
DP class. The slow convergence ofPstd is due to finite time
corrections to the scalingf10,11g

Pstd , t−ds1 + at−u + bt−u8 + ¯ d. s5d

As for the one-dimensional CRP, the small changes intro-
duced in CP with CRP are not able to remove the latter

contact process from the DP universality class, but its critical
rate is significantly altered.

Now, we introduce the scaling hypothesis of Grassberger
and de la Torref2g near the critical point

PsD,td . t−dfsDt1/nid, s6d

where ni is a universal critical exponent andD= ul−lcu.
Similar relations are expected fornstd and R2std. In the
subcritical regime the survival probability decays expo-
nentially for t→`, and consequently the scaling function
must assume the formfsxd,xnid exps−axnid, where a is
a positive constant. Introducingfsxd in Eq. s6d we obtain
P, exps−aDnitd and the characteristic relaxation time di-
verges asji ,D−ni. ji can be obtained from the linear regres-
sion of lnsPd or lnsnd as a function oft for long times.

In Fig. 3sad, two examples of theji determination are
shown. The number of independent runs and time steps used
to generate these curves varied from 108 and 102 for the
larger D values, respectively, to 106 samples with 105 time
steps for the smaller ones. In Fig. 3sbd, the characteristic time
ji determined through the lnsnd versust curves is plotted as

FIG. 1. sad Survival probability and mean number of particles
versus time for the two-dimensional CRP. In these plots, 106

samples were used to simulate the ratesl=1.083 17sopen circlesd,
1.083 21sfilled circlesd, and 1.083 24ssquaresd. The solid lines cor-
respond to cubic polynomial fits with coefficient of correlationr2

.0.9999.sbd Curvature as a function ofl obtained from the cubic
fits. The solid lines represent quadratic fits.
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a function of the distance from the critical pointD. The slope
of the line isni=1.2907 while the slope obtained using the
curves lnsPd versust is ni=1.2762. Thus,ni=1.28s3d was
adopted. This exponent value is in good agreement with the

CP exponentniCP
=1.295s6d f6g. Other exponents are defined

in the DP class, but they depend on the previously deter-
mined exponentsf10g. Near the critical point, the stationary
density r,Db, the correlation lengthj',D−n', and the
variance of stationary densityx,D−g define the remaining
critical exponents that obey the relationsb=dni, 2n'=zni,
andg=dn'−2b f10g.

Simulations of CRP in the cubic lattice provide a critical
ratelc.1. The critical exponents are very close to those of
the four-dimensional CP, i.e.,d=1, h=0, andz=1 f10g. In
Fig. 4, P/ t−1 andn versus time are plotted for critical, sub-
critical, and supercriticall values. Forl;1 the curves are
nearly time independent, but a small perturbationsDl
=10−4d in the ratel=1 clearly causes an upwardsl.lcd or
downwardsl,lcd deviation from the constant. However, a
critical rate larger than unity is expected for any finited. So,
in the present case, thelc value is so close to unitysin
agreement with our simulations the difference is lower than
10−5d that the difference cannot be observed within our cur-

FIG. 2. Ratios between the time-dependent quantities for CRP at
l=1.083 21 and the correspondent power laws of the DP universal-
ity class. In these simulations, 106 independent trials were used.

FIG. 3. Determination of the critical exponentni. sad Examples
of the exponential decays observed for the subcritical regime.sbd
Characteristic timeji as a function of the distance from the critical
point D.

FIG. 4. The ratios between the time-dependent quantities and
the corresponding power laws for the three-dimensional CRP. The
deviation from unity isDl=10−4 and the averages were done over
106 independent trials.

FIG. 5. Comparisons between three-dimensional CP and CRP at
the critical pointslc=1.3169s1d f10g and lc=1, respectively. 106

independent trials were used in these simulations.
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rent numerical uncertainties. This result is somewhat unex-
pected since small alterations in the CP generally do not
change the DP classf14–17g. Indeed, even significant alter-
ations, as for example the inclusion of new absorbing con-
figurations, can affect dynamic exponents but the static ex-
ponents of CP are preservedf18–20,28–30g. These results
suggest that the CRP has a different upper critical dimension
of the CP. This change probably occurs due to the next-
nearest-neighbor dependence in the replication rates, which
becomes more significant as the lattice coordination number
is increased.

The clear difference between three-dimensional CRP and
CP is illustrated in Fig. 5, in which the time-dependent quan-
tities P and n for CRP and CP are compared. Also, the re-
spective power laws for the DP class ind=3 fd=0.730s4d
andh=0.114s4d f7gg andd=4 sd=1 andh=0d are indicated
by the dashed lines. Finally,ni was determined and the mean
field valueni=1 was obtained.

In summary, the contact replication process in two and
three dimensions was studied through intensive Monte Carlo

simulations. The two-dimensional model belongs to the di-
rected percolation universality class with a critical rate de-
fining the absorbing state transitionlc=1.083 20s7d. How-
ever, the three-dimensional CRP exhibits the mean field
critical exponents indicating that the upper critical dimension
of the model isdc=3, in contrast to the conventional contact
process for whichdc=4. This fact illustrates how important
are the details of the biological modeling rules. In particular,
this work suggests that an epidemic can be equivalent to a
reproduction process in low-dimensional systems, but not in
three-dimensional ones. A potential application for these
modelssCP and CRPd is tumor virotherapy modelingf31g, in
which viruses that replicate selectively in cancer cells can
kill them. In this reaction-diffusion model, a CP-like model
will govern the virus dynamics while CRP will determine the
tumor cells dynamics.
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