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Critical behavior of the two- and three-dimensional contact replication processes
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The two- and three-dimensional contact replication proce§8&P for monoclonal reproduction were
analyzed through intensive Monte Carlo simulations. In these models, the occupation rates are equally divided
among the empty nearest neighbor sites of an occupied site. As the one-dimensional case, the two-dimensional
version of the model belongs to the directed percolation universality class and the critical rate defining the
absorbing state transition }s=1.083 207). However, the critical exponents of the three-dimensional CRP are
those of the four-dimensional original contact process and, consequently, the data suggest that the CRP model
has a distinct upper critical dimensial=3.
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The counterpart of the Ising model for the nonequilibriumonly cells in “contact” with empty sites can replicate, we
statistical mechanics is the contact proc@3B) proposed by refer to this model as aontact replication proceséCRP.
Harris [1] as a model of epidemics. In the CP model, par-This model is a hybrid of the CP and the WB models. It was
ticles represented by occupied sites of a regular lattice die &hown through Monte Carlo simulations =1 that the
a rate 1 whereas empty sites are occupied at aluatg.  CRP model belongs to the DP universality clf2g].

Here, k is the number of occupied nearest-neighiohiN) In the present work, we analyze the contact replication
sites of an empty site arglis the coordination number of the processegCRP in two and three dimensions. The central
lattice. As the ratio of infection and death increases, the sysconcern of this work is about the maintenarioenot) of the

tem exhibits a critical phase transition from the vacuum to arbp universality class in higher dimensions. As we shall dem-
active state characterized by the directed percolatid®)  onstrate, ird=2 the model belongs to DP class, butin3 it
universality clasg2,3]. The CP critical exponents and rates is not the case. Indeed, the present numerical results suggest
were precisely determined through series expansions an#lat d.=3 is the upper critical dimension of the model, in
Monte Carlo simulations inl=1, 2, and 3 dimensiorfg-9].  which the mean field critical exponents are obtained.

Also, the upper critical dimension, in which the critical ex-  As in the original CP, the cells lie on a regular lattice with
ponents assume the mean field valuesl;#s4. For a review  periodic boundaries, in which;=1 represents an occupied
about contact processes and the DP universality class, se@do;=0 an empty site. The dynamics of the CRP includes
Refs.[10-12. two processes, namely, cell death and reproduction. A cell

Due to its importance as a fundamental model, several CRies at constant rate 1. In turn, if a cell has at least one empty
generalizations were propos¢d3-2(Q. All these models NN site, it replicates at rate and its daughter cell occupies
preserve the DP universality class. A common feature for albne of its empty NN sites chosen with equal probabilities.
mentioned models is that the flow of the infection is equallyNotice the subtle but essential difference between CRP and
divided among all the neighbors of the contaminated indi-CP. In CP, an occupied site infects each one of its empty NN
viduals. This is a reasonable hypothesis for a model of episites at ratex/q independently of their number. In contrast,
demics, but not adequate for a model of monoclonal replicain the CRP the occupation rates depend on the number of
tion processes such as those occurring in tumor or bacterigimpty NN sites, i.e., an occupied site infects each one of its
growth [21]. Actually, in these cases it is more realistic to empty NN sites at rate/n", wheren” is its number of empty
suppose the flow of new cells divided just among the emptyNN sites. If the reproduction rate is not sufficiently large, the
neighbors because the new cells should occupy empty sitégcuum always is reached. The discrete-time formulation of
or sites occupied by normal cells in the case of the tumothe CRP used in the simulations is the following. At each
growth. Several stochastic models have been proposed tfime step, one occupied sita cel) is chosen at random. The
simulate monoclonal cell reproductipp2—26. The simplest  chosen cell dies with probabilitp=1/(1+\). In turn, the
one is the Williams and Bjerkne®VB) model[23], in which  cell replicates with probability 1p if at least one of their
death and reproduction are considered only for cells with aNN sites is empty. If all the NN sites are occupied, the cell
least one empty NN site. The WB model does not belong tqjoes not replicate. But, if the replication occurs, one of their
the DP universality class. Recently, we studied a modifiecempty NN sites is occupied with equal probabilities. After
one-dimensional version of the CP, in which cells with ateach step, the time is incremented&ty=1/n, wheren is the
least one empty neighbor site replicate at vateut any cell  number of cells just prior the event.
dies at rate 127]. The new cells generated from the division  Tg determine the CRP critical rate =2 and 3 dimen-
occupy one of their empty NN sites chosen at random. Sincgjons, we considered the CRP starting with a single particle

at the origin[10,11]. The behaviors of some time-dependent
guantities, namely, the survival probabili§(t), the mean
*Electronic address: silviojr@ufv.br number of occupied sites
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were analyzed. Heré--) represents the average over all tri-
als, including those reaching the absorbing configuration be-
fore timet, andr the position of the site measured from the
initial seed. In the subcritical regim@ <\.) both P(t) and
n(t) decay exponentially, whereas the spreading is diffusive
with R?(t)~t if the CRP obeys the usual scaling theory for
absorbing phase transitions. In the supercritical regime | . .
>\, P(t) reaches a constant and finite valné) ~t%, and (@) '° t
R%(t) ~t?, whent—o [11]. Exactly at the critical point\
=\o), these quantities asymptotically follow power laws
P(t) ~t™%, n(t) ~t”, andR?(t) ~ t%. Notice thatz is frequently
used in the literature to represent the dynamic exponent, bu  0.05- -
herez refers to the spreading exponent. For the DP univer-
sality class, these exponents obey the hyperscaling relatiol
45+2n=zdfor d<4[2]. Thus, the double-logarithm plots of
these quantities near the critical point exhibit an upward
(downward curvature forh >N, (A <\y).

In Fig. 1(a), double-logarithm plots oP(t) andn(t) ver-
sus time for the two-dimensional CRP and distinctalues
around the critical point are shown. To determine the point of  -0.104 ]
null curvature, the double-logarithm data are fitted by cubic

polynomialsP5(t) and the mean curvature is defined as ) 1.08316 1.08320 1.08324 1.08328
A

0.00

Curvature

-0.05 =P .

1 logyo tf
() = —Iog t; - log t-f K(t), (3 FIG. 1. (a) Survival probability and mean number of particles
1071 1071 Jlogio versus time for the two-dimensional CRP. In these plot$$ 10
wheret; (t;) is the initial (final) time used for the fittings and Samples were used to simulate the ratesl.083 17(open circle

«() is the local curvature defined by the usual formula 1.083 21(filled circles, and 1.083 24squares The solid lines cor-
respond to cubic polynomial fits with coefficient of correlatich

B [ >0.9999.(b) Curvature as a function of obtained from the cubic
K= [1+ (Pé)z]?,/z' (4) fits. The solid lines represent quadratic fits.

We used; = 10" andt;=10" for all X values. The critical point  contact process from the DP universality class, but its critical
is determined by extrapolating the data using a quadratigsie is significantly altered.

fitting [Fig. 1(b)]. The critical rate obtained considerijt) Now, we introduce the scaling hypothesis of Grassberger
was \=1.083 20 33 and the value obtained usim®) was  and de la Torrd2] near the critical point

A.=1.083 211 3. Thus\.=1.083 2Q7) was adopted, where Ser n el

the number in parentheses reflects the uncertainty. Notice P(A,) = 7f(AL™), (6)
that the CRP critical rate id=2 is smaller than the corre- where v, is a universal critical exponent ani=|\—\.
spondent rate of CR;"=1.64881) [10]. Indeed, this is ex-  Similar relations are expected for(t) and R3(t). In the
pected since transitions evolving the*birth of a new p%rticleg,ubcritica| regime the survival probability decays expo-
occur at ratek/q in CP and at raten/n" in CRP, wheren'  nentially for t—o, and consequently the scaling function
=g. In Fig. 2, the ratios between time-dependent quantitiesnust assume the forni(x) ~ x1° exp(—ax”), where a is
and power laws with the critical exponents of the DP class positive constant. Introducinf(x) in Eq. (6) we obtain
[6=0.450810), #=0.229510), andz=1.132510) [5,6]] are  p— ex-aA"t) and the characteristic relaxation time di-

shown. All the curves asymptotically reach a constant valugerges as;~ A™. & can be obtained from the linear regres-
demonstrating that the two-dimensional CRP belongs to thgjon of In(P) or In(n) as a function ot for long times.

DP cIa_ss. The slow copvergencel%(ft) is due to finite time In Fig. 3a), two examples of thef determination are
corrections to the scalindl0,11] shown. The number of independent runs and time steps used
P(t) ~ (1 +at’ + bt? + ---). (5) 10 generate these curves varied fronf Ehd 16 for the

larger A values, respectively, to §Gamples with 19time
As for the one-dimensional CRP, the small changes introsteps for the smaller ones. In Figb the characteristic time
duced in CP with CRP are not able to remove the latterg, determined through the (n) versust curves is plotted as
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FIG. 2. Ratios between the time-dependent quantities for CRP
A=1.083 21 and the correspondent power laws of the DP universa
ity class. In these simulations, Ahdependent trials were used.
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FIG. 4. The ratios between the time-dependent quantities and
he corresponding power laws for the three-dimensional CRP. The
deviation from unity isAN=10"* and the averages were done over
10° independent trials.

of the line is»,=1.2907 while the slope obtained using the CP exponent;=1.2956) [6]. Other exponents are defined

curves IfP) versust is 1=1.2762. Thusy=1.283) was

in the DP class, but they depend on the previously deter-

adopted. This exponent value is in good agreement with thgined exponentpl0]. Near the critical point, the stationary
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FIG. 3. Determination of the critical exponent (a) Examples
of the exponential decays observed for the subcritical regite.
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density p~A#, the correlation lengthé, ~A™1, and the
variance of stationary density~ A~ define the remaining
critical exponents that obey the relatiogs 6y, 2v, =zy,
and y=dv, -28 [10].

Simulations of CRP in the cubic lattice provide a critical
rate .= 1. The critical exponents are very close to those of
the four-dimensional CP, i.e§=1, »=0, andz=1 [10]. In
Fig. 4, P/t™! andn versus time are plotted for critical, sub-
critical, and supercriticak values. ForA=1 the curves are
nearly time independent, but a small perturbation
=10"% in the ratex=1 clearly causes an upwafd>\.) or
downward(\ <\.) deviation from the constant. However, a
critical rate larger than unity is expected for any finiteSo,
in the present case, the, value is so close to unityin
agreement with our simulations the difference is lower than
107°) that the difference cannot be observed within our cur-

slope = 0.114 ’,/'
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FIG. 5. Comparisons between three-dimensional CP and CRP at

Characteristic time; as a function of the distance from the critical the critical pointsh;=1.31691) [10] and \.=1, respectively. 1D

point A.

independent trials were used in these simulations.
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rent numerical uncertainties. This result is somewhat unexsimulations. The two-dimensional model belongs to the di-
pected since small alterations in the CP generally do notected percolation universality class with a critical rate de-
change the DP clagd4-17. Indeed, even significant alter- fining the absorbing state transitiog=1.083 207). How-
ations, as for example the inclusion of new absorbing coneyer, the three-dimensional CRP exhibits the mean field
figurations, can affect dynamic exponents but the static excritical exponents indicating that the upper critical dimension
ponents of CP are preservéti8—20,28-30) These results  of the model isd,=3, in contrast to the conventional contact
suggest that the CRP has a different upper critical dimensioprocess for whictd,=4. This fact illustrates how important

of the CP. This change probably occurs due to the nextae the details of the biological modeling rules. In particular,
nearest-neighbor dependence in the replication rates, whighis \work suggests that an epidemic can be equivalent to a
becomes more significant as the lattice coordination ”Umberreproduction process in low-dimensional systems, but not in

is increased. three-dimensional ones. A potential application for these

T_he_ clear diffgreqce bgtwee_n three-_dimensional CRP athodels(CP and CRPis tumor virotherapy modelinfg], in
CP is illustrated in Fig. 5, in which the time-dependent quanyyhich viruses that replicate selectively in cancer cells can
tities P and n for CRP and CP are compared. Also, the re-yiy them In this reaction-diffusion model, a CP-like model
spective power laws for the DP class a3 [529'7,3(14) will govern the virus dynamics while CRP will determine the
and »=0.1144) [7]] andd=4 (6=1 and»=0) are indicated  ,mor cells dynamics.
by the dashed lines. Finally, was determined and the mean
field valuey =1 was obtained. | thank M. L. Martins and J. A. Redinz for the critical
In summary, the contact replication process in two andeading of this manuscript. This work was supported by
three dimensions was studied through intensive Monte Carl€NPq, a Brazilian agency.
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